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Abstract

In genomic studies, thousands of features are collected on relatively few samples. One of the goals of
these studies is to build classifiers to predict the outcome of future observations. There are three inherent
steps to this process: feature selection, model selection, and prediction assessment. With a focus on pre-
diction assessment, we compare several methods for estimating the "true’ prediction error of a prediction
model in the presence of feature selection. For small studies where features are selected from thousands
of candidates, the resubstitution and simple split-sample estimates are seriously biased. In these small
samples, leave-one-out (LOOCYV), 10-fold cross-validation (CV), and the .632+ bootstrap have the smallest
bias for diagonal discriminant analysis, nearest neighbor, and classification trees. LOOCV and 10-fold CV
have the smallest bias for linear discriminant analysis. Additionally, LOOCYV, 5- and 10-fold CV, and the
.632+ bootstrap have the lowest mean square error. The .632+ bootstrap is quite biased in small sample
sizes with strong signal to noise ratios. The differences in performance among resampling methods are
reduced as the number of specimens available increases.

Supplementary Information: R code for simulations and analyses is available from the authors. Tables
and figures for all analyses are available at http:/ /linus.nci.nih.gov/ brb/TechReport.htm
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1 Introduction

In genomic experiments one frequently encounters high dimensional data and small sample sizes. Mi-
croarrays simultaneously monitor expression levels for several thousands of genes. Proteomic profiling
studies using SELDI-TOF (surface-enhanced laser desorption and ionization time-of-flight) measure size
and charge of proteins and protein fragments by mass spectroscopy, and result in up to 15,000 intensity
levels at prespecified mass values for each spectrum. Sample sizes in such experiments are typically less
than 100.

In many studies observations are known to belong to predetermined classes and the task is to build
predictors or classifiers for new observations whose class is unknown. Deciding which genes or proteomic
measurements to include in the prediction is called feature selection and is a crucial step in developing a
class predictor. Including too many noisy variables reduces accuracy of the prediction and may lead to
over-fitting of data, resulting in promising but often non-reproducible results ( ).

Another difficulty is model selection with numerous classification models available. An important step
in reporting results is assessing the chosen model’s error rate, or generalizability. In the absence of in-
dependent validation data, a common approach to estimating predictive accuracy is based on some form
of resampling the original data, e.g., cross-validation. These techniques divide the data into a learning set
and a test set and range in complexity from the popular learning-test split to v-fold cross-validation, Monte-
Carlo v-fold cross-validation, and bootstrap resampling. Few comparisons of standard resampling methods
have been performed to date, and all of them exhibit limitations that make their conclusions inapplicable to
most genomic settings. Early comparisons of resampling techniques in the literature are focussed on model
selection as opposed to prediction error estimation ( , ; A ). In two re-
cent assessments of resampling techniques for error estimation ( | 4 |

), feature selection was not included as part of the resampling procedures, causing the conclusions to
be inapplicable to the high-dimensional setting.

We have performed an extensive comparison of resampling methods to estimate prediction error using
simulated (large signal to noise ratio), microarray (intermediate signal to noise ratio) and proteomic data
(low signal to noise ratio), encompassing increasing sample sizes with large numbers of features. The
impact of feature selection on the performance of various cross validation methods is highlighted. The
results elucidate the 'best’ resampling techniques for future research involving high dimensional data to
avoid overly optimistic assessment of the performance of a model.



2 Methods

In the prediction problem, one observes n independent and identically distributed (i.i.d.) random variables
041, ..., 0, with unknown distribution P. Each observation in O consists of an outcome Y with range y
and a l-vector of measured covariates, or features, X with range X, such that O; = (X,,Y;), i = 1,.

In microarray experiments X includes gene expression measurements, while in proteomic data, it mcludes
the intensities at the mass over charge (m/z) values. X may also contain covariates such as a patient’s age
and/or histopathologic measurements. The outcome Y may be a continuous measure such as months to
disease or a categorical measure such as disease status.

The goal in class prediction is to build a rule implementing the information from X in order to predict
Y. The intention is that by building this rule based on the observations Oy, ..., 0, a future unobserved
outcome Yj can be predicted based on its corresponding measured features Xj. If the outcome is contin-
uous, then the rule, or predictor, ¢ is defined as a mapping from the feature space X' onto the real line,
ie. ¢ : X — R. Consequently, § = ¥(x) denotes the predicted outcome based on the observed X. Such
predictors can be built via regression (linear and non) or recursive binary partitioning such as Classifica-
tion and Regression Trees (CART) ( | ). If the outcome Y is categorical it assumes one of
K values. In this case, the rule 1 partitions the feature space X into K disjoint and exhaustive groups Gy,
where k = 1,..., K, such that § = k if x € G. Standard statistical analyses include linear discriminant
analysis (LDA) and diagonal discriminant classifiers (DDA), nearest neighbors (NN), and CART, as well
as aggregate classifiers. Thorough discussions of the prediction problem and available algorithms can be
found in (1984); (1992); (1996); (2003).

The rule ¢ can be written as (- | P,), where P,, denotes the empirical distribution of O and reflects
the dependence of the built rule on the observed data. Loss functions may be employed to quantify the
performance of a given rule. A common loss function for a continuous outcome Y is the squared error
loss, L(Y, ) = [Y — ¢(X)]?. With a categorical outcome Y, a popular choice is the indicator loss function,
L(Y,¢) = I[Y # 9(X)]. A loss function could also incorporate differential misclassification costs (

For either type of outcome, the expected loss, or risk, is defined as:
Z

0 = Ry, P) = Ep[L(Y,¥)] = L(y,¥())dP(x,y). (1)
The rule in (T) is constructed and evaluated upon the distribution P, as such, § is referred to as the asymptotic
risk. However, in reality P is unknown, thus, the rule based upon the observations Oy,..., 0, has an
expected loss, or conditional risk (also known as the generalization error), defined as:

6 = ROCIP). P) = [ Lly v(alP)dP (). @

There are two impetuses for evaluating the conditional risk: model selection and performance assessment.
In model selection, the goal is to find the one which minimizes the conditional risk over a collection of
potential models. In performance assessment, the goal is to estimate the generalization error for a given
model, i.e., assess how well it predicts the outcome of an observation not included in O.

In an ideal setting an independent data set would be available for the purposes of model selection and
estimating the generalization error. Typically, however, one must use the observed sample O for model
building, selection, and performance assessment. The simplest method for estimating the conditional risk
is with the resubstitution or apparent error:

GRS = R(Y(|P.), P) = / Ly, (2| P.)dPa(z, ). 3)

Here all n observations are used for constructing, selecting, and, subsequently, evaluating the prediction
error of ¢. Consequently, the resubstitution risk estimate tends to underestimate the generalization error
( A b | ). To alleviate this biased estimation, resampling methods such as cross-
validation or bootstrapping can be employed. In the next section, we describe these techniques and their
implications in the framework of prediction error.



2.1 Resampling Methods

In the absence of a large, independent test set, there are numerous techniques for assessing prediction error
by implementing some form of partitioning or resampling of the original observed data O. Each of these
techniques involves dividing the data into a learning set and a test set. For purposes of model selection
the learning set may further be divided into a training set and a validation set. We will focus solely on the
partitioning of the data into learning and test sets for the purpose of estimating the generalization error.
To enhance a general discussion of resampling methods we define a binary random n-vector, S,, €
{0, 1}", which splits the observations into the desired subsets ( | ). A realization of S,, =
(Sn1,---,Snn) prescribes a particular split of the entire data set of n observations into a learning set, {i €
{1,...,n} : Sp; = 0}, and a test set, {i € {1,...,n} : S,; = 1}. Let p be the proportion of observations
in the test set. The empirical distributions of the learning and test sets are denoted by P} 3 and P, ¢ ,
respectively. Importantly, S,, is independent of the empirical distribution of the complete data set of n
observations P, and the particular distribution of S,, defines the type of resampling method. Given S, the
performance of any given estimator ¢(-|P,,) can be assessed via the resampling conditional risk estimate

on(l—p) = ESW, /L(Oﬂ/’( | PS,SW))dPi,Sn (0)7 (4)

where S, refers to binary split vectors for the entire data set of n observations and p = ), S; ,/n is the
proportion of n observations in the test set.

There are several considerations when selecting a resampling method. The first is sample size n. For
v-fold cross-validation and bootstrap, ( ) have shown that as n — oo (and
consequently np — co) asymptotic optimality is achieved. However, no such results exist for finite samples.
Other considerations are on the proportion p of the observations for the test set and the number of times
the estimate is calculated. We address these considerations in the following sections and refer the reader to
more detailed discussions in ( ) and ( ).

2.1.1 Split Sample

This popular resampling method, also known as the learning-test split or holdout method ( A ),
entails a single partition of the data into a learning set and a test set based on a predetermined p. For exam-
ple, p = 1/3 allots two-thirds of the data to the learning set and one third to the test set. The distribution
of S,, places mass 1/2 on two binary vectors which assign the n observations to the learning and test sets.
The advantage of this method is the ease of computation. Also, since the classifier is developed only once,
a completely specified algorithm for classifier development need not be available; the development can be
more informal and subjective. There are two potential sources of bias inherent in this method: bias intro-
duced by each individual observation contributing only to the learning or test set; and, bias due to a small
learning set whereas both features and classifiers selected depend solely on the learning set. Because the
learning set is smaller than the full data set, the test set error for a model built on the training set will tend
to over-estimate the unknown generalization error for a model built on the full dataset.

2.1.2 wv-fold Cross-Validation

This method randomly assigns the n observations to one of v partitions such that the partitions are near
equal size. Subsequently, the learning set contains all but one of the partitions which is labeled the test set.
The generalization error is assessed for each of the v test sets and then averaged over v. In this method, the
distribution of S,, puts mass 1/v on the v binary vectors which assign each of the n observations to one of
the v partitions. The proportion p is approximately equal to 1/v. Both p and the number of averages can
adversely or positively affect this estimate of error. For example, a larger v (e.g., v = 10) results in a smaller
proportion p in the test set; thus, a higher proportion in the learning set decreasing the bias. In addition,
the number of averages is equivalent to v and thus, may additionally decrease the bias.



2.1.3 Leave-One-Out Cross-Validation (LOOCYV)

This is the most extreme case of v-fold cross-validation. In this method each observation is individually
assigned to the test set, i.e, v = nand p = 1/n ( ! X X

L ). The distribution of Sn places mass 1/n on the n binary vectors Wthh assign each of the n
observations to the learning and test sets. LOOCV and the corresponding p = 1/n represent the best
example of a bias-variance trade-off. It tends toward a small bias with elevated variance. In model selection,
LOOCYV has performed poorly compared to 10-fold cross-validation ( , ). Due to
the computational burden, LOOCV has not been a favored method for large samples and its behavior in
estimating generalization error has not been thoroughly studied.

2.1.4 Monte Carlo Cross-Validation (MCCV)

MCCYV randomly splits the sample into a learning and test set numerous times (e.g., 20, 50, or 1000 itera-
tions). For each split np = n(1/v) of the observations are labeled as the test set and n(1 — p) = n(1 — 1/v)
as the learning set. For example, in MCCV with v = 10 each of 50 iterations allot 10% of the data to the
test set and 90% to the learning set. The generalization error is assessed for each of the 50 test sets and
subsequently averaged over the 50 iterations. The distribution of S,, puts mass 1/ (TZ;) on each of the bi-
nary vectors representing one split into a learning and test set. As the number of iterations increase the
computational burden of MCCV is quite large. However, unless the iterations of random splits approaches
infinity, the chance that each observation is included in a learning set and a test set (over all iterations) is
small introducing a similar bias to that of the split sample approach (i.e., when each observation is either in
the learning set or test set).

2.1.5 .632+ Bootstrap

Several variations of the bootstrap have been introduced to estimate the generalization error. The leave-
one-out bootstrap (62%) is based on a random sample drawn with replacement from n observations ( A
A ). For each draw the observations left out (approximately .368n) serve as
the test set. The learning set has approximately .632n unique observations which leads to an overestimation
of the prediction error (i.e., a decrease in the learning set leads to an increase in the bias). To correct for this
two estimators have been suggested: the .632 bootstrap and the .632+ estimator. Both correct by adding the
underestimated resubstitution error 025, wfBS + (1 —w)2S. For the .632 bootstrap the weight w is constant
(w = .632), whereas for the .632+ bootstrap w is determined based on the “no-information error rate” (
} ). We focus on the latter as it is the most widely used in the literature and the most
robust across different algorithms ( A ).

2.2 Algorithms

Predictions of outcomes based on the observed X can employ parametric or non-parametric algorithms. If
the outcome is continuous, predictors can be built using regression models or recursive binary partitioning
like CART. If the outcome is categorical, algorithms which partition the feature space X into disjoint and
exhaustive groups are used. In this manuscript, we limit our discussion to the classification of binary
outcomes, i.e., Y = 0 or Y = 1, and thus, evaluate methods for the estimation of prediction error in the
context of the following classification algorithms.

We calculate the LDA with the 1da function in the MASS library of the statistical package R (

, ). We use the function d1lda in the library supclust in R
to implement DDA ( ! ). The library supclust also houses the function nnr
for NN. CART classification is obtained using the library and function rpart in R ( ) ;

4 )



3 Analysis

The goal of this analysis is to ascertain differences between resampling methods in the estimation of the
generalization error (presently, limited to the classification problem) in the presence of feature selection.
We evaluate the influence of sample size, parametric to non-parametric classification methods, and large
feature spaces on each resampling method’s ability to estimate the resampling conditional risk én( 1—p) (Eq.
4) compared to that of the “true” conditional risk ,, (Eq. 2). As such, a range of sample sizes (n = 40,
n = 80, and n = 120), classification algorithms (LDA, DDA, NN, and CART), and data sets (simulated,
microarray, and proteomic; see Sections|3.1-3.3)) are utilized. Prior to discussing results, the general strategy
for estimating the risks is explained followed by the specifics of each data set.

Each data set consists of N observations with N; cases and Ny controls and [ measured features. For
r =1,..., R repetitions, a random sample of size n stratified by case/control status is selected from N such
that the number of cases in the subsample (n/2) equals the number of controls. The stratification allows
for equal representation of both cases and controls such that classification algorithms relying on majority
consensus are not biased toward either ( , ). This random sample, or subsample, plays
two roles. First, it serves as a sample from which the resampling conditional risk én(l,p) can be estimated.
This is accomplished by splitting the subsample into a learning and test set corresponding to each of the
resampling methods. For each r, an estimate of én(l—p) is obtained for each resampling method with all
four algorithms. In reality the distribution P of the observed data O is unknown and thus, so is the “true”
conditional risk. In order to estimate 6,, in Eq. 2l we will use the complete observed data. As such, the
subsample’s second role is to serve as the learning set and the remaining N — n observations as the test set
for an approximation of the conditional risk 6,,.

To compare the resampling methods in Section 2.1, conditional risk estimates for each method are cal-
culated and compared to each other and the truth (i.e., the conditional risk). This evaluation is based on the
mean squared error (MSE) and bias, calculated as follows:

R
1 . _
MSE = f§ r — O )2
S r T:I(anﬂ 0n,7)
1E _
Bias =~ -
ias . Til(@,w On.r),

where ényr is the resampling conditional risk and én,r is the conditional risk for the rth repetition. In all
results the total number of repetitions is set at 100, i.e., R = 100.

There were several attempts to examine the effect of varying p on those resampling methods which allow
user-defined test set proportions (i.e., v-fold cross-validation, MCCYV, and split sample). For v-fold cross
validation, 2, 5, and 10-fold were explored. In MCCYV, both p and the number of MCCV repetitions affect
the estimation, thus, test set proportions of p = 0.5, p = 0.2, p = 0.1 as well as repetitions of 20, 50, and 1000
were run. In split sample estimation test set proportions of both p = 1/3 and p = 1/2 were examined to
assess the bias/variance trade-off.

Given the high-dimensional structure of each data set (i.e., large !), feature selection is an important
step before running any of the algorithms. Feature selection must be based on the learning set within each
resampling, otherwise additional bias is introduced ( A ). This correct approach to feature
selection within cross-validation has been referred to as honest or complete ( , ). There are
many methods available for feature selection, here univariate ¢-tests are used. Initially components of X
with the largest 10 absolute value t-test statistics are considered. Subsequently, the largest 20 are discussed.

All simulations and analyses were implemented in R ( | ).



3.1 Simulated Data

The simulated data sets are generated as described in ( ). Each data set contains
N = 300 observations with 750 covariates, representing patients and features (or genes), respectively. Half
of the observations (i.e., 150) are labeled controls (Y = 0) and half cases (Y = 1). Of the 750 genes, 8 are
associated with disease and the others are non-predictive. The controls are simulated from a multivariate
normal distribution with a mean of 0 and covariance matrix ¥. The cases have 98% non-differentially
expressed genes which are generated from the same N (0, ) as the controls. The 2% of the genes that are
differentially expressed are generated from a mixture of two multivariate normals with means y; and ps
and covariance structure 3. The mixing probability is 0.5. The covariance matrix ¥ = (o;;) has a block
structure with ¢;; = 0.2 for |j —4| < 5 and zero otherwise. Estimates of én(l—p) and 6, are based on learning
samples of size 40, 80, and 120 and test sets of size 260, 220, and 180, respectively.

3.2 Lymphoma and Lung Gene Microarray Data

Lymphoma Cancer Data The lymphoma microarray data set is publicly available and focuses on diffuse
large-B-cell lymphoma ( A ). In this study there are 7399 genes on the microarray and
240 patients. For the purposes of this analysis, the outcome variable represents the lymphoma subtype:
activated B-cell for Y = 0 and germinal-center B-cell for Y = 1. This is an example of a moderate signal
to noise ratio data set as the subgroups do not separate perfectly based on the microarray observations
( I ). Estimates of én(l—p) and én are based on learning samples of size 40, 80, and 120 and
test sets of size 200, 160, and 120, respectively.

Lung Cancer Data The second study uses oligonucleotide microarrays to measure 12601 transcript se-
quences for 186 lung tumor samples ( ! ). For our analysis, the outcome represents
the 139 adenocarcinomas as ¥ = 0 and the remaining 47 tumors as Y = 1. Estimates of én(l,p) and 6,, are
based on learning samples of size 40 and 80 and test sets of size 146 and 106, respectively. This is another
example of a moderate signal to noise ratio data set.

3.3 Ovarian Proteomic Data

The proteomic data set consists of 164 SELDI-TOF measurements from NCI/Mayo Clinic serum samples.
These data are part of a study designed to validate previously identified proteomic markers for ovarian
cancer. The readings are from fraction 4, IMAC30 ProteinChip arrays, read at high and low energy settings
in a PCS4000 ProteinChip Reader (Ciphergen Biosystems, Inc., Fremont, CA). The spectra were externally
calibrated for mass, internally normalized for intensity using total ion current, and baseline subtracted.
Peaks were manually selected and the intensity recorded.

Of the n = 164 observations, 45 are ovarian cancer cases and 119 controls. Estimates of 9n(1_p) and 6,
are based on learning samples of size 40 and 80 and test sets of size 144 and 104, respectively. Given the
nature of proteomic data as well as the naive algorithms implemented this will serve as a low signal to
noise example.

4 Results

A limited number of tables and figures are displayed in this manuscript; however, all tables and figures can
be found at http://linus.nci.nih.gov/ brb/TechReport.htm.

Simulation Study Results. For n = 40, LOOCYV and 10-fold CV have the smallest MSE and bias followed
by 5-fold CV and then .632+ (Table [1). The largest MSE and bias occur with 2-fold CV and Split Sample
with p = 1/2. For n = 80 and n = 120 the differences among these methods diminish. For n = 40 and
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n = 80, .632+ has the smallest standard deviation followed by 10-fold CV, LOOCYV, and 5-fold CV. The only
exception is for LDA and NN at n = 80, when LOOCYV and 10-fold CV have the smallest. Atn = 120, the
differences among these methods diminish.

Lymphoma and Lung Study Results. In the lymphoma study, for n = 40, 80, and 120, .632+, LOOCYV, 5-
and 10-fold CV have the smallest MSE and bias. The two split samples and 2-fold CV have the largest MSE
and bias. Similar to the simulation study, .632+ has the smallest standard deviation across the algorithms
and sample sizes, while both Split Samples do by far the worst. The results with the DDA algorithm are
shown in Table 2. In the lung tumor study, for n = 40 and n = 80, .632+, LOOCYV, 5- and 10-fold CV have
the smallest MSE and bias. The two split samples and 2-fold CV have the largest MSE and bias. Similar to
the simulation and lymphoma study, .632+ has the smallest standard deviation across the algorithms and
sample sizes. The results for the lung tumor study with the DDA algorithm are shown in Figure 1.

Ovarian Study Results. For n = 40 to n = 80, LOOCV and .632+ have the smallest MSE followed by 5-
and 10-fold CV. As for bias, 10-fold CV, .632+, and LOOCYV vie for the smallest. The largest MSE and bias
occurs with the Split Samples and 2-fold CV. Again .632+ has the smallest standard deviation across algo-
rithms and sample sizes; however, the discrepancy is much smaller than in the other two studies. The Split
Samples have the largest standard deviations. The results with the DDA algorithm are shown in Table[3|

Twenty features. All analyses were repeated with selecting the 20 features having the largest ¢-test statis-
tics. The ranking of the resampling methods remained the same. Results from choosing the top 20 genes in
the simulation study for n = 40 are shown in Table 4.

MCCYV. The MCCV estimates show a slight decrease in variance in comparison to those of v-fold CV. In-
terestingly, the advantage of increasing the MCCYV iterations from 20 to 50 to 1000 is minimal, i.e., the MSE
is equivalent over the iterations while the bias and variance slightly decrease. The MCCV results for the
simulation study at n=40 are shown in Table 5.

Repeated Resampling. We examined the effect of repeated resampling on 2-,5-, and 10-fold CV and Split
Sample with p = 1/3 for the three samples sizes and four algorithms. Each was repeated 10 and 30 times.
Interestingly, there was minimal improvement when increased from 10 to 30 repeats. However when in-
creasing repeats from 1 to 10 (or 30), all standard deviations decreased (up to 50%). The MSE either de-
creased (up to 35%) or stayed similar, which was also true for the bias except in Split Sample for n=40 and
2-fold CV for n=40 and n=80. The results for repeated v-fold CV are shown in Table/6/and those for repeated
Split-Sample in Table 7.

Dimensionality of Feature Space. In the simulations of ( ), .632+ outperformed
LOOCYV and 10-fold CV. For example, in their experiment 22, with 10 variables and 36 patients, the MSE
was .040 for .632+ and .058 for LOOCV. However, in our simulations with n=40 (Table|1) .632+ does not fair
so well, particularly with regard to bias. To investigate the differences between our simulations and those
in we decreased the dimensions of the feature space to a total of 10 variables instead
of 750. The results are shown in Table 8 for the sample size of 40. With low dimension the large bias of the
bootstrap is substantially reduced and the .632+ does as well or better than LOOCV and 10-fold CV.

Resampling with and without Replacement. To understand the ramification of resampling with replace-
ment as it pertains to the bootstrap estimates we compared the leave-one-out bootstrap estimate (Section
2.1.5) to the 3-fold MCCV. The 3-fold MCCV randomly selects .666n for the learning set and and .333n for
the test set. This is repeated numerous times and the estimates averaged. Therefore the 3-fold MCCV is
equivalent to the leave-one-out bootstrap except it employs resampling without replacement. Table [9] dis-
plays the Simulation Study results for the two estimates using 50 iterations for both. Interestingly, the bias
and MSE for the leave-one-out bootstrap are roughly double that of 3-fold MCCV. The only two distinct



differences between the two methods are the replicate copies in the learning set inherent in the bootstrap
estimate and the fact that on average .632n unique observations are in the learning sample for the leave-
one-out bootstrap whereas there are always .666n in the learning sample for the 3-fold MCCV. Both of these
factors may contribute to the increase in bias and MSE. The results for n = 40 can be compared to the
resubstitution and .632+ estimates for the same sample size in Table[ll
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Table 1: Simulation Study Prediction Error Estimates with 10 features. The estimate 0, (col 4) and standard de-
viation (col 5) based on learning sample of size 40. The estimate 0,, (rows 1-4) and standard deviation based
on the remaining 260 observations. Bias (col 6) and MSE (col 7) reported for each resampling technique (col
1) and algorithm (col 3). The ten features with largest ¢-statistics used in algorithms. Minimums in bold.

Estimator P Algorithm  Est  St.Dev  Bias MSE
LDA 0.078  0.093
On 0.87 DDA 0.160  0.086
NN 0.042  0.084
CART 0.121  0.133

LDA 0.007  0.016  -0.071 0.012

ORs 1 DDA 0.04 0.039 -0.12  0.019

NN 0 0 -0.042  0.009

CART 0.039 0.052 -0.082 0.015

LDA 0357  0.126 0279  0.097

0.5 DDA 0.342  0.106  0.182  0.052

NN 0277 0135 0235 0.077

CART 0430 0.121 0.309 0.134

LDA 0.161  0.127  0.083 0.017

v-fold 0.2 DDA 0.208  0.086  0.048 0.012

Ccv NN 0.108  0.102  0.066  0.011

CART 0284 0.117 0163 0.055

LDA 0.118  0.120  0.040  0.008

0.1 DDA 0.177 ~ 0.087  0.017  0.007

NN 0.078 ~ 0.102  0.036  0.005

CART 0.189  0.104  0.068 0.024

LDA 0.092  0.115  0.014  0.008

LOOCV 0.025 DDA 0.164  0.096  0.004 0.007

NN 0.058  0.103  0.016  0.005

CART 0.146 0125  0.025 0.018

LDA 0.205 0.184 0127  0.053

0.333 DDA 0.243 0.138 0.083  0.034

NN 0.145 0.169 0.103  0.044

SPLIT CART 0.371 0.174 0.25 0.121
LDA 0.348 0.185 0.270  0.113

0.5 DDA 0.344 0.139 0.184  0.062

NN 0.265 0.177 0.223  0.086

CART 0.438  0.155 0.317  0.147

LDA 0.274  0.084 0.196  0.047

632+ DDA 0286  0.074 0.126  0.028
50 reps ~ .368 NN 0.200  0.070 0.158  0.032
CART 0.387  0.080 0.266  0.100

Table 2: Lymphoma Study Prediction Error Estimates with 10 genes. Comparison of resampling method’s MSE,
bias, and standard deviation. Results shown are for the DDA algorithm using the top 10 genes as ranked
by corresponding t-tests.

Resampling n =40 n = 80 n =120
Method St.Dev  Bias MSE  StDev  Bias MSE  StDev  Bias MSE
2-fold CV 0.085 0.038  0.01 0.043 0.002  0.004 | 0.031 0.0 0.003

5-fold CV 0.07 0.004 0.007 | 0.045 -0.008  0.005 | 0.032 -0.006  0.003
10-fold CV | 0.063 -0.007  0.006 | 0.036 -0.009  0.003 | 0.031 -0.006  0.003
LOOCV 0.072 -0.019  0.008 | 0.04 -0.013  0.004 | 0.033 -0.004  0.003

SPLIT 1/3 0.119 0.001  0.017 | 0.071 0.0 0.007 | 0.059 -0.004  0.005
SPLIT 1/2 0.117 0.037 0.018 | 0.058 0.001  0.005 | 0.046 -0.001  0.004
632+ 0.049 -0.006  0.004 | 0.025 -0.02 0.003 | 0.018 -0.015  0.002
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Table 3: Ovarian Study Prediction Error Estimates with 10 genes. Comparison of resampling method’s MSE,
bias, and standard deviation. Results shown are for the DDA algorithm using the top 10 genes as ranked
by corresponding ¢-tests.

Resampling n = 40 n = 80
Method St.Dev Bias MSE  St.Dev Bias MSE
2-fold CV 0.098 0.026  0.015 | 0.05 0.004  0.007

5-fold CV 0.082 0.0 0.012 | 0.039 -0.005  0.006
10-fold CV | 0.082 -0.01 0.011 | 0.036 -0.005  0.005
LOOCV 0.079 -0.004 0.011 | 0.037 -0.004  0.006
SPLIT 1/3 0.133 -0.002  0.022 | 0.075 -0.009  0.009
SPLIT 1/2 0.113 0.027  0.018 | 0.071 0.013  0.01
632+ 0.075 -0.006  0.011 | 0.028 -0.014  0.005

Table 4: Simulation Study Prediction Error Estimates with 20 features. The estimate 6,, (col 4) and standard de-
viation (col 5) based on learning sample of size 40. The estimate 0,, (rows 1-4) and standard deviation based
on the remaining 260 observations. Bias (col 6) and MSE (col 7) reported for each resampling technique (col
1) and algorithm (col 3). The 20 features with largest ¢-statistics used in algorithms. Minimums in bold.

Estimator P Algorithm Est St.Dev  Bias MSE
LDA 0.117 0.086

On 0.87 DDA 0.215 0.06
NN 0.043  0.078
CART 0.123  0.135

LDA 0.37 0.109 0253  0.078

0.5 DDA 0.343 0.087 0128 0.026

NN 0.191 0.125 0.148  0.036

CART 0.433  0.115 0.31 0.134
LDA 0.182  0.109  0.065 0.014

v-fold 0.2 DDA 0.25 0.089  0.035 0.012
Ccv NN 0.072  0.093  0.029  0.006
CART 0.277 0105 0.154  0.049

LDA 0.147  0.111 0.03 0.008

0.1 DDA 0.232 0.09 0.017  0.009

NN 0.06 0.088  0.017  0.003

CART 0.195 0.11 0.072  0.024

LDA 0.138 0.125 0.021  0.008

LOOCV 0.025 DDA 0.234  0.106 0.019  0.012
NN 0.049 0.087  0.006  0.002

CART 0.144  0.122 0.021  0.011

LDA 0.262 0.172 0.145  0.051

0.333 DDA 0288 0134 0.073  0.028

NN 0.098 0148  0.055 0.022

SPLIT CART 0377 0174 0254 0.124
LDA 0362 0156 0245 0.084

0.5 DDA 0.341 0.117  0.126  0.031

NN 0.177 0.17 0.134  0.047

CART 0.442 0149 0319 0.144

LDA 0.301 0.084  0.184 0.04

.632+ DDA 0.311 0.074  0.096  0.017
50 reps ~ .368 NN 0.148  0.072 0.105 0.017

CART 0.395 0.080 0272 0.104
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Table 5: Simulation Study MCCV Prediction Error Estimates with 10 features. The estimate 6,, (col 4) and
standard deviation (col 5) based on learning sample of size 40. Bias (col 6) and MSE (col 7) reported for
each MCCYV fold (col 1) and algorithm (col 3). The ten features with largest ¢-statistics used in algorithms.
Minimums in bold.

Estimator  Iterations  Algorithm  Est  St.Dev  Bias MSE
LDA 0373 0.067 0295 0.095

DDA 0.35 0.066 0.19  0.048

20 NN 0.269  0.069 0227  0.06

CART 0449  0.061 0328 0.133

LDA 0371  0.065 0293 0.093

DDA 0.349  0.068  0.189 0.048

MCCV 2 50 NN 0269  0.067 0227 0.059
CART 0.448 0.058 0.327 0.132

LDA 0.369 0.06 0291  0.092

DDA 0.349  0.066  0.189 0.048

1000 NN 0272 0.064 023  0.061
CART 0.445 0054 0324 0.13

LDA 0.16 0.121 0.082  0.014

DDA 0.214  0.081 0.054 0.011

20 NN 0.103 0.1 0.061  0.009

CART 0266  0.088  0.145 0.043
LDA 0.159  0.117  0.081 0.014
DDA 0215 0.076  0.055 0.01
MCCV 5 50 NN 0.105 0.097  0.063 0.009
CART 0273  0.082  0.152 0.044
LDA 0.159  0.112  0.081 0.014
DDA 0213  0.074 0.053 0.01
1000 NN 0.105  0.094  0.063 0.009
CART 0277 0074 0156 0.045
LDA 0.123  0.122  0.045 0.008
DDA 0.183  0.086  0.023  0.008
20 NN 0.077  0.105 0.035 0.005
CART 0196 0112  0.075 0.023
LDA 0.121 0.116  0.043  0.008
DDA 0.182  0.079  0.022 0.007
MCCV 10 50 NN 0.074  0.095 0.032 0.005
CART 0.191 0.099 0.07  0.021
LDA 0.116  0.112  0.038  0.008
DDA 0.18 0.078 0.02  0.006
1000 NN 0.074  0.094 0.032 0.005
CART 0.191 0.092 0.07 0.02
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Table 6: Repeated v-fold Resampling in the Simulation Study with 10 features. To assess the effect of repeated
resampling on v-fold CV a single v-fold CV is compared to the average of 10 repeats in the simulation study.
The bias (col 7) and MSE (col 8) are reported over sample sizes of 40 and 80 (col 1), 2-,5-, and 10-fold CV
(col 2), and four algorithms (col 4). The ten features with largest ¢-statistics are used in algorithms.

n  ov-fold Repeats Algorithm  Est StDev  Bias = MSE
LDA 0357  0.126 0279  0.097

1 DDA 0342 0106 0182 0.052

NN 0277 0135 0235 0.077

2 CART 0.43 0.121 0.309 0.134
LDA 0.37 0.065  0.292  0.094

10 DDA 0.348 0.07 0.188  0.048

NN 0269  0.069 0227  0.06

CART 0.448  0.061 0.327  0.132
LDA 0.161 0.127  0.083 0.017

1 DDA 0.208  0.086  0.048 0.012

NN 0.108  0.102  0.066 0.011

5 CART 0284 0117  0.163  0.055

40 LDA 0.159  0.114 0.081 0.014
10 DDA 0209  0.073  0.049 0.009

NN 0.104  0.095  0.062 0.009

CART 0.278 0.08 0.157  0.046
LDA 0.118 0.12 0.04  0.008

1 DDA 0.177  0.087  0.017 0.007

NN 0.078 0102  0.036  0.005

10 CART 0.189  0.104 0.068 0.024
LDA 0.116  0.109  0.038  0.008

10 DDA 0.179  0.081 0.019  0.006

NN 0.075 0.094 0.033 0.005

CART 0.192  0.095 0.071 0.021
LDA 0.074  0.078  0.047 0.007

1 DDA 0.14 0.08 0.069 0.01

NN 0.037  0.066  0.027 0.004

2 CART 0.126  0.098 0.084 0.016
LDA 0.08 0.068  0.053  0.006

10 DDA 0.151 0.057 0.08  0.009

NN 0.047  0.058  0.037 0.004

CART 0.128  0.051 0.086  0.01
LDA 0.033  0.046  0.006  0.001

1 DDA 0.086  0.056  0.015 0.002

NN 0.015 0.033  0.005 0.001

5 CART 0.049 0.044 0.007 0.002

80 LDA 0.033  0.042  0.006 0.001
10 DDA 0.084 0.054 0.013 0.002

NN 0.015 0.032  0.005 0.001

CART 0.048  0.037  0.006 0.002
LDA 0.029  0.037  0.002 0.001

1 DDA 0.076  0.053 0.005 0.001
NN 0.013  0.031 0.003 0
10 CART 0.045 0.042 0.003 0.002
LDA 0.029  0.034  0.002 0.001
10 DDA 0.076 ~ 0.052  0.005 0.001
NN 0.012  0.026  0.002 0

CART 0.044 0.036  0.002 0.002
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Table 7: Repeated Split-Sample Resampling in the Simulation Study with 10 features. To assess the effect of
repeated resampling on Split-Sample a single split is compared to the average of 10 splits in the simulation
study. The bias (col 6) and MSE (col 7) are reported over sample sizes of 40, 80, and 120 (col 1) and four
algorithms (col 3). The ten features with largest ¢-statistics are used in algorithms.

n  Repeats Algorithm  Est  StDev  Bias  MSE
LDA 0205 0.184 0.127 0.053

1 DDA 0243 0138  0.083 0.034

NN 0.145  0.169 0.103  0.044

CART 0.371 0.174 025 0.121

LDA 0.24 0.121 0.162  0.039

10 DDA 0.271 0.088  0.111  0.025

40 NN 0.171 0.107 0129  0.029
CART 0.37 0.101 0.249  0.096

LDA 0.24 0112 0.162 0.036

30 DDA 0.267 0.08 0.107  0.022

NN 0.17 0.1 0.128  0.025

CART 0364 0092 0243 0.091
LDA 0.037  0.052 0.01  0.002
1 DDA 0.11 0.087  0.039  0.009
NN 0.02 0.055 0.01  0.002
CART 0.043  0.052  0.001 0.004
LDA 0.041 0.052  0.014 0.002
10 DDA 0.102  0.059 0.031  0.003
80 NN 0.021 0.045 0.011  0.001
CART 0.057  0.041 0.015 0.002
LDA 0.043  0.053 0.016  0.002
30 DDA 0.102  0.057  0.031 0.003
NN 0.022  0.044 0.012 0.001
CART 0.061 0.041 0.019  0.002
LDA 0.028  0.038 0.007 0.001
1 DDA 0.068  0.064 0.016 0.003
NN 0.012 0.03 0.003  0.001
CART 0.034  0.039 0.008  0.002
LDA 0.027 0.03 0.006 0
10 DDA 0.069 0.044 0.017 0.001
120 NN 0.012  0.024  0.003 0
CART 0.036  0.026 0.01  0.001
LDA 0.027  0.028  0.006 0
30 DDA 0.071 0.044  0.019 0.001
NN 0.012  0.024  0.003 0
CART 0.037  0.023 0.011  0.001
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Table 8: Simulation Study Prediction Error Estimates without feature selection. To assess the effect of no feature
selection on resampling methods estimation, only 10 features were simulated and all 10 used in estimation.
Results based on learning sample of 40 and a test sample of size 260. Absolute minimums in bold.

Estimator P Algorithm  Est  St.Dev  Bias MSE
LDA 0.026  0.028
On 0.87 DDA 0073  0.058
NN 0.010  0.017
CART 0.099  0.092
LDA 0.067  0.060  0.041  0.005
0.5 DDA 0.106  0.079  0.033  0.009
NN 0.011  0.025  0.001 0
CART 0304 0.088 0205 0.063
LDA 0.034 0.045 0.008 0.002
v-fold 0.2 DDA 0.085  0.049  0.012  0.003
cv NN 0.011  0.024  0.001 0
CART 0.158  0.072  0.059  0.012
LDA 0.032  0.041 0.006  0.001
0.1 DDA 0.074  0.048  0.001  0.002
NN 0.010  0.021 0 0
CART 0.118  0.063  0.019  0.006
LDA 0.028  0.040  0.002  0.001
DDA 0.072  0.049  -0.001 0.002
LOOCV 0.025 NN 0.010  0.022 0 0
CART 0.110 0.075  0.011  0.006
LDA 0.046  0.076  0.020  0.005

0.333 DDA 0.066  0.085  -0.007  0.008

NN 0.007  0.029  -0.003  0.001

SPLIT CART 0.265  0.116 0.166  0.047
LDA 0.073  0.078 0.047  0.007

0.5 DDA 0.093  0.099 0.020 0.013

NN 0.010  0.028 0 0.001

CART 0.308  0.114 0.209  0.071

LDA 0.037  0.036 0.011  0.001

632+ DDA 0.085  0.036 0.012  0.003
50 reps = .368 NN 0.008  0.016  -0.002 0

CART 0.160  0.034 0.061  0.010

Table 9: Resampling with and without Replacement. The leave-one-out bootstrap and 3-fold MCCV estimate
(col 3), standard deviation (col 4), bias (col 5), and MSE (col 6), over 3 samples sizes and 4 algorithms.
Feature selection was used to select the top 10 ranked features by ¢-tests.

Leave-one-out Bootstrap 3-fold MCCV

n Alg Est St.Dev(Est) Bias  MSE Est St.Dev(Est) Bias  MSE
LDA | 0.331 0.075 0252 0.072 | 0.242 0.101 0.164  0.035
DDA | 0.337 0.075 0.177  0.044 | 0.270 0.072 0.110  0.022
n=40 NN | 0.259 0.072 0217 0.055 | 0.167 0.083 0.125  0.022
CART | 0.414 0.065 0296 0.114 | 0.377 0.085 0.256  0.094
LDA | 0.07 0.063 0.043 0.004 | 0.044 0.053 0.017  0.002
DDA | 0.146 0.058 0.074 0.008 | 0.104 0.058 0.033  0.003
n=80 NN | 0.046 0.056 0.036  0.003 | 0.022 0.043 0.012  0.001
CART | 0.098 0.047 0.057  0.006 | 0.062 0.039 0.020  0.002

LDA | 0.032 0.033 0.011  0.001 | 0.026 0.026 0.005 0
DDA | 0.088 0.045 0.036  0.002 | 0.068 0.043 0.016  0.001

n=120 NN | 0.016 0.030 0.007 0 0.012 0.023 0.003 0
CART | 0.048 0.025 0.022  0.001 | 0.038 0.022 0.012  0.001
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Figure 1: Lung Study Prediction Error Estimates with DDA using 10 genes.



5 Discussion

Estimation of prediction error when confronted with a multitude of covariates and small sample sizes is a
relatively new problem. Feature selection, sample size, and signal to noise ratio have important influences
on the relative performance of resampling methods. We have evaluated resampling methods for use in high
dimensional classification problems using a range of sample sizes, algorithms, and signals. Some general
conclusions may be summarized as follows:

1. With small sample sizes, the Split Sample method and 2-fold CV perform very poorly. This poor
performance is primarily due to a large positive bias resulting from use of a reduced training set
size which severely impairs its ability to effectively select features and fit a model. The large bias
contributes to a large MSE.

2. LOOCYV generally performs very well with regard to MSE and bias. The only exception is when an
unstable classifier (e.g., CART) is used in the presence of a weak signal. In this setting, the larger MSE
is attributed to LOOCV’s increased variance.

3. 10-fold CV prediction error estimates approximate those of LOOCYV in almost all settings. For
computationally burdensome analyses, 10-fold CV may be preferable to LOOCV. Additionally, in the
simulated data, repeated resamplings (the average of 10 repeats) reduce the MSE, bias, and variance
of 10-fold CV.

4. The .632+ prediction error estimate performs best with moderate to weak signal to noise ratios. Pre-
vious studies have found the bootstrap variants superior to LOOCV and v-fold CV; however, these
studies did not include feature selection. As seen in Table 1, honest resampling in small samples with
strong signal suggest that LOOCV and 10-fold CV are in fact better than the .632+ bootstrap. This
discrepancy fades when feature selection is discarded (Table 8) and when the signal decreases as seen
in the Lymphoma and Ovarian data sets (Tables 2/ and [3). Additional glimpses into the bootstrap es-
timate (Table9) indicate that the sampling with replacement increases the MSE and bias substantially
over 3-fold MCCYV (i.e., resampling without replacement).

5. MCCYV does not decrease the MSE or bias enough to warrant its use over v-fold CV.

6. As the sample size grows the differences among the resampling methods decrease. Additionally, as
the signal decreases from strong in the simulated data to rather weak in the ovarian data the discrep-
ancies between the methods diminish.

In future work we will compare the resampling methods for continuous outcomes and continue to
explore the behavior of the bootstrap estimates. Additionally, the effect of feature selection method may
play an important role in prediction and needs further investigation.
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